460 research outputs found

    Part-aware Prototype Network for Few-shot Semantic Segmentation

    Full text link
    Few-shot semantic segmentation aims to learn to segment new object classes with only a few annotated examples, which has a wide range of real-world applications. Most existing methods either focus on the restrictive setting of one-way few-shot segmentation or suffer from incomplete coverage of object regions. In this paper, we propose a novel few-shot semantic segmentation framework based on the prototype representation. Our key idea is to decompose the holistic class representation into a set of part-aware prototypes, capable of capturing diverse and fine-grained object features. In addition, we propose to leverage unlabeled data to enrich our part-aware prototypes, resulting in better modeling of intra-class variations of semantic objects. We develop a novel graph neural network model to generate and enhance the proposed part-aware prototypes based on labeled and unlabeled images. Extensive experimental evaluations on two benchmarks show that our method outperforms the prior art with a sizable margin.Comment: ECCV-202

    Fine-Granularity Transmission Distortion Modeling for Video Packet Scheduling Over Mesh Networks

    Get PDF
    Digital Object Identifier 10.1109/TMM.2009.2036290Packet scheduling is a critical component in multi-session video streaming over mesh networks. Different video packets have different levels of contribution to the overall video presentation quality at the receiver side. In this work, we develop a fine-granularity transmission distortion model for the encoder to predict the quality degradation of decoded videos caused by lost video packets. Based on this packet-level transmission distortion model, we propose a content-and-deadline-aware scheduling (CDAS) scheme for multi-session video streaming over multi-hop mesh networks, where content priority, queuing delays, and dynamic network transmission conditions are jointly considered for each video packet. Our extensive experimental results demonstrate that the proposed transmission distortion model and the CDAS scheme significantly improve the performance of multi-session video streaming over mesh networks

    Understanding gas transport mechanisms in shale gas reservoir: Pore network modelling approach

    Get PDF
    This report summarizes the recent findings on gas transport mechanisms in shale gas reservoir by pore network modelling. Multi-scale pore network model was developed to accurately characterize the shale pore structure. The pore network single component gas transport model was established considering the gas slippage and real gas property. The gas transport mechanisms in shale pore systems were elaborated on this basis. A multicomponent hydrocarbon pore network transport model was further proposed considering the influences of capillary pressure and fluid occurrence on fugacity balance. The hydrocarbon composition and pore structure influences on condensate gas transport were analyzed. These results provide valuable insights on gas transport mechanisms in shale gas reservoir.Cited as: Song, W., Yao, J., Zhang, K., Yang, Y., Sun, H. Understanding gas transport mechanisms in shale gas reservoir: Pore network modelling approach. Advances in Geo-Energy Research, 2022, 6(4): 359-360. https://doi.org/10.46690/ager.2022.04.1

    Numerical simulation on structural safety and dynamic response of coal mine rescue ball with gas explosion load using Arbitrary Lagrangian-Eulerian (ALE) algorithm

    Get PDF
    Coal mine rescue devices, which can supply miners underground with fundamental shelters after gas explosion, are essential for safety production of coal mines. In this paper, a novel and composite structure-rescue antiknock ball for coal mine rescue is designed. Further, the structural safety and dynamic response under gas explosion of the antiknock ball is investigated by ALE algorithm. To achieve this goal, the ALE finite element method is described in dynamic form, and governing equations and the finite element expressions of the ALE algorithm are derived. 3 balls with different structures are designed and dynamic response analysis has been conducted in a semi-closed tunnel with explosive load of pre-mixed gas/air mixture by using ALE algorithm based on explicit nonlinear dynamic program LS-DYNA. Displacement field, stress field and energy transmission laws are analyzed and compared via theoretical calculations. Results show that the cabin door, emergency door and spherical shell are important components of the rescue ball. The 3# composite ball is the optimization structure that can delay the shock effect of the gas explosion load on a coal mine rescue system; the simulation results can provide reference data for coal mine rescue system design

    Deep learning of systematic sea ice model errors from data assimilation increments

    Full text link
    Data assimilation is often viewed as a framework for correcting short-term error growth in dynamical climate model forecasts. When viewed on the time scales of climate however, these short-term corrections, or analysis increments, can closely mirror the systematic bias patterns of the dynamical model. In this study, we use convolutional neural networks (CNNs) to learn a mapping from model state variables to analysis increments, in order to showcase the feasibility of a data-driven model parameterization which can predict state-dependent model errors. We undertake this problem using an ice-ocean data assimilation system within the Seamless system for Prediction and EArth system Research (SPEAR) model, developed at the Geophysical Fluid Dynamics Laboratory, which assimilates satellite observations of sea ice concentration every 5 days between 1982--2017. The CNN then takes inputs of data assimilation forecast states and tendencies, and makes predictions of the corresponding sea ice concentration increments. Specifically, the inputs are states and tendencies of sea ice concentration, sea-surface temperature, ice velocities, ice thickness, net shortwave radiation, ice-surface skin temperature, sea-surface salinity, as well as a land-sea mask. We find the CNN is able to make skillful predictions of the increments in both the Arctic and Antarctic and across all seasons, with skill that consistently exceeds that of a climatological increment prediction. This suggests that the CNN could be used to reduce sea ice biases in free-running SPEAR simulations, either as a sea ice parameterization or an online bias correction tool for numerical sea ice forecasts.Comment: 38 pages, 8 figures, 10 supplementary figure
    corecore